Multispectral Palmprint Encoding and Recognition

نویسندگان

  • Zohaib Khan
  • Faisal Shafait
  • Yiqun Hu
  • Ajmal S. Mian
چکیده

Palmprints are emerging as a new entity in multimodal biometrics for human identification and verification. Multispectral palmprint images captured in the visible and infrared spectrum not only contain the wrinkles and ridge structure of a palm, but also the underlying pattern of veins; making them a highly discriminating biometric identifier. In this paper, we propose a feature encoding scheme for robust and highly accurate representation and matching of multispectral palmprints. To facilitate compact storage of the feature, we design a binary hash table structure that allows for efficient matching in large databases. Comprehensive experiments for both identification and verification scenarios are performed on two public datasets – one captured with a contact-based sensor (PolyU dataset), and the other with a contact-free sensor (CASIA dataset). Recognition results in various experimental setups show that the proposed method consistently outperforms existing state-of-theart methods. Error rates achieved by our method (0.003% on PolyU and 0.2% on CASIA) are the lowest reported in literature on both dataset and clearly indicate the viability of palmprint as a reliable and promising biometric. All source codes are publicly available.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multispectral Palmprint Recognition Using a Quaternion Matrix

Palmprints have been widely studied for biometric recognition for many years. Traditionally, a white light source is used for illumination. Recently, multispectral imaging has drawn attention because of its high recognition accuracy. Multispectral palmprint systems can provide more discriminant information under different illuminations in a short time, thus they can achieve better recognition a...

متن کامل

Highly Accurate Multispectral Palmprint Recognition Using Statistical and Wavelet Features

Palmprint is one of the most useful physiological biometrics that can be used as a powerful means in personal recognition systems. The major features of the palmprints are palm lines, wrinkles and ridges, and many approaches use them in different ways towards solving the palmprint recognition problem. Here we proposed to use a set of statistical and waveletbased features; statistical to capture...

متن کامل

Multispectral image fusion for illumination-invariant palmprint recognition

Multispectral palmprint recognition has shown broad prospects for personal identification due to its high accuracy and great stability. In this paper, we develop a novel illumination-invariant multispectral palmprint recognition method. To combine the information from multiple spectral bands, an image-level fusion framework is completed based on a fast and adaptive bidimensional empirical mode ...

متن کامل

Illumination Invariant Feature Extraction for Multispectral Palmprint Verification

The aim of biometrics is to identify humans from their personal traits more efficiently using devices, algorithms and procedures for applications that require security and authentication. Multispectral image analysis has gained importance due to its potential for accurate and faster recognition performance. In this paper, Multispectral palmprint biometric system is proposed which uses the fusio...

متن کامل

Rank-level Fusion of Multispectral Palmprints

This paper presents an approach for the personal authentication using rank-level fusion of multispectral palmprints, instead of using multiple biometric modalities and multiple matchers. The rank level fusion involving the non linear combination of hyperbolic tangent functions gives the best recognition rate for the Rank 1 obtained from two types of features, viz., sigmoid and fuzzy. The result...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1402.2941  شماره 

صفحات  -

تاریخ انتشار 2014